Dual Prediction–Correction Methods for Linearly Constrained Time-Varying Convex Programs
نویسندگان
چکیده
منابع مشابه
Rescaled proximal methods for linearly constrained convex problems
We present an inexact interior point proximal method to solve linearly constrained convex problems. In fact, we derive a primal-dual algorithm to solve the KKT conditions of the optimization problem using a modified version of the rescaled proximal method. We also present a pure primal method. The proposed proximal method has as distinctive feature the possibility of allowing inexact inner step...
متن کاملAccelerated first-order primal-dual proximal methods for linearly constrained composite convex programming
Motivated by big data applications, first-order methods have been extremely popular in recent years. However, naive gradient methods generally converge slowly. Hence, much efforts have been made to accelerate various first-order methods. This paper proposes two accelerated methods towards solving structured linearly constrained convex programming, for which we assume composite convex objective ...
متن کاملOn Superlinear Convergence of Infeasible Interior-Point Algorithms for Linearly Constrained Convex Programs
This note derives bounds on the length of the primal-dual affine scaling directions associated with a linearly constrained convex program satisfying the following conditions: 1) the problem has a solution satisfying strict complementarity, 2) the Hessian of the objective function satisfies a certain invariance property. We illustrate the usefulness of these bounds by establishing the superlinea...
متن کاملTrust region affine scaling algorithms for linearly constrained convex and concave programs
We study a trust region affine scaling algorithm for solving the linearly constrained convex or concave programming problem. Under primal nondegeneracy assumption, we prove that every accumulation point of the sequence generated by the algorithm satisfies the first order necessary condition for optimality of the problem. For a special class of convex or concave functions satisfying a certain in...
متن کاملA Linearly Convergent Dual-Based Gradient Projection Algorithm for Quadratically Constrained Convex Minimization
This paper presents a new dual formulation for quadratically constrained convex programs (QCCP). The special structure of the derived dual problem allows to apply the gradient projection algorithm to produce a simple explicit method involving only elementary vector-matrix operations, that is proven to converge at a linear rate.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Automatic Control
سال: 2019
ISSN: 0018-9286,1558-2523,2334-3303
DOI: 10.1109/tac.2018.2877682